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Large amplitude progressive interfacial waves 
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This paper contains a study of large amplitude, progressive interfacial waves moving 
between two infinite fluids of different densities. The highest wave has been calculated 
using the criterion that it has zero horizontal fluid velocity a t  the interface in a frame 
moving at the phase speed of the waves. For free surface waves this criterion is iden- 
tical to the criterion due to Stokes, namely that there is a stagnation point a t  the crest 
of each wave. It is found that as the density of the upper fluid increases relative to the 
density of the lower fluid the maximum height of the wave, for fixed wavelength, 
increases. The maximum height of a Boussinesq wave, which has the density almost 
the same above and below the interface, is 2.5 times the maximum height of a surface 
wave of the same wavelength. A wave with air over the top of it can be about 2 % 
higher than the highest free surface wave. The point a t  which the limiting criterion is 
first satisfied moves from the crest for free surface waves to the point half-way be- 
tween the crest and the trough for Boussinesq waves. The phase speed, momentum, 
energy and other wave properties are calculated for waves up to the highest using 
Pad6 approximants. For free surface waves and waves with air above the interface 
the maximum value of these properties occurs for waves which are lower than the 
highest. For Boussinesq waves and waves with the density of the upper fluid one- 
tenth of the density of the lower fluid these properties each increase monotonically 
with the wave height. 

1. Introduction 
Over the past decades a large amount of work has been done on steady, progressive, 

free surface waves. Stokes (1880) asserted that the highest surface wave would have 
a stagnation point a t  the crest in a frame moving with the waves and from this he 
deduced that the wave must be sharp crested and enclose an angle of 120" at the crest. 
Stokes formulated the problem as a perturbation expansion and obtained the solution 
to third order for waves on an infinitely deep fluid. Levi-Civita (1925) proved Stokes' 
expansion was convergent for sufficiently small waves. The coefficients of the expan- 
sion have been calculated to higher orders by various authors and most recently by 
Schwartz (1974) and Cokelet (1977), who used digital computers to calculate the 
expansion to approximately 100th order. Using Pad6 approximants to sum these 
series, they determined the highest wave for various values of the water depth. 
Cokelet also calculated the mass, momentum and energy and their respective fluxes 
and showed that  these and the phase speed achieved their maxiimm values for waves 
lower than the highest. 

However, waves which occur in nature are never, in fact, free surface waves, since 
they are always beneath a fluid of some finite density, if only air. Despite this fact, 
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very little work has been done on finite amplitude interfacial and internal waves. 
Benjamin (1966) considered finite amplitude effects on solitary and cnoidal waves 
in a stratified fluid. Hunt (1961) considered interfacial waves in a similar manner to 
that of Levi-Civita (1925) for surface waves and claimed to prove the convergence of 
the perturbation expansion for interfacial waves. Unfortunately this paper is in- 
correct, since the boundary conditions are incorrectly applied, and there is, a t  present, 
no proof of the convergence of the series expansion for interfacial waves. Tsuji & 
Nagata (1973) have correctly carried the expansion for interfacial waves to fifth 
order, which has provided a check on the present calculations. 

None of the papers mentioned above has considered what limits the height of 
interfacial waves. The highest interfacial wave cannot have a stagnation point a t  the 
crest, since this would imply infinite velocity around the crest in the upper fluid. This 
criterion can only be true for free surface waves. A criterion that will limit the height 
of interfacial and internal waves will be that the horizontal fluid speed at  some point 
in the fluid equals the phase speed. For interfacial waves this criterion is exactly 
equivalent to stating that the interface will become vertical at  some point. If this 
point were the crest, as it is for free surface waves, there would be a stagnation point, 
since the vertical velocity is zero a t  the crest. The criterion is discussed further in 5 4. 
Since the waves studied in this paper move along a sharp interface which has no surface 
tension, the waves will always be unstable to short wavelength perturbations. How- 
ever, in any given physical situation there will always be either surface tension or a 
diffuse interface to stabilize short waves, and, provided that the shear across the 
interface is small enough, the waves will be first limited in height by the criterion 
that the interface becomes vertical. Orlanski & Bryan (1969) discuss this limiting 
criterion with reference to the thermocline in the ocean and give evidence to suggest 
that breaking by this mechanism occurs before the system becomes Kelvin-Helm- 
holtz unstable. Thorpe (1978) also considers this criterion and in laboratory experi- 
ments, which include the effects of shear and a continuous stratification, he observes 
this type of wave breaking occurring before Kelvin-Helmholtz instability. 

This paper considers large amplitude interfacial waves moving between two infinite 
fluids of different densities, which are at rest far from the interface. Using Pad6 
approximants to sum the series, we calculate the height of the highest wave, applying 
the criterion that the highest wave will have the horizontal fluid speed equal to the 
phase speed a t  some point in the fluid. For surface waves this first occurs a t  the crest 
and the criterion becomes the same as that used by Stokes, namely that there is a 
stagnation point at the crest in the frame moving with the waves. For waves with 
non-zero density in the upper plane the waves can no longer be limited in height by 
the crest, since this would imply infinite velocity around the crest. Instead the inter- 
face first becomes vertical a short way from the crest. We show that Boussinesq 
waves, for which the density difference is only important when incorporated with 
gravity, attain the limiting criterion a t  their mid-height. This is because as Boussinesq 
waves get higher, for fixed wavelength, they flatten a t  the troughs and crests and the 
highest value of the surface slope is always a t  the mid-height, making this the point 
where the profile first becomes vertical, and thus the point where the horizontal fluid 
speed first equals the phase speed. 

In  9 5 we calculate the phase speed, wave momentum, kinetic and potential ener- 
gies, the momentum flux and the energy flux of the waves. For free surface waves 
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each of these properties reaches a maximum value for a wave amplitude less than the 
highest (Cokelet 1977). We confirm this result and show that it also happens if a fluid 
of about the density of air is over the waves. Thus it is possible to apply any conse- 
quences of this effect, such as those suggested by Longuet-Higgins & Fenton (1974)) 
to the ocean or laboratory where, one assumes, there will always be air above the 
waves. For Boussinesq waves each of the wave properties increases monotonically with 
the wave height. We also consider an intermediate case in which the upper density 
is one tenth of the lower density and in this case the wave properties also increase 
monotonically with the wave height. The reason that only waves with a low density 
fluid on top can achieve a maximum in their properties is that it is only for these 
waves that the highest wave profile intersects that of slightly lower waves very near 
the crest, which makes the highest wave actually lower for most of the profile. For 
Boussinesq waves the profiles always intersect a t  the mid-height and the height of 
the wave a t  each point increases monotonically with the wave height, which makes a 
maximum impossible. 

We also show that as the density of the upper fluid increases relative to the density 
of the lower fluid the maximum wave amplitude of the wave increases. The maximum 
amplitude of a Boussinesq wave is over twice the amplitude of a surface wave of the 
same wavelength. A wave with air over the top of it can be about 2 yo higher than the 
highest free surface wave of the same wavelength. 

2. Formulation of problem 
We consider symmetrical, two-dimensional, periodic waves of wavelength h and 

wavenumber k = 2n/h moving from left to right without change of form along an 
interface under the influence of gravity. Units of length and time are chosen so that 
k = 1 and cg = g(pl-p2) / (p1+p2)  k = 1, where p1 and'p, are the densities of the fluids 
below and above the interface respectively, with pl > p2. The phase speed of infini- 
tesimal waves is c,,. The unit of length has been chosen so that the wavelength is 
always fixed a t  27~. The fluids above and below the interface are assumed to be in- 
viscid and incompressible and the motion irrotational. The reference frame is chosen 
80 that the fluid velocity tends to zero as the distance from the interface tends to 
infinity. Thia defines the propagation speed c of the waves uniquely with respect to 
that frame. 

We choose rectangular co-ordinates (x, y) with the x axis horizontal and the y axis 
vertically upwards. The interface is at  y = y and the origin is chosen so that the mean 
height of the interface ;i7 is zero and so that a t  t = 0, x = 0 is at  the crest of a wave. 
Since the fluids are incompressible and irrotational, we can define stream functions, 
$,and $2, and velocity potentials, q51 and 42, for the lower and upper fluidsrespectively, 
which satisfy Laplace's equation. These will be defined such that the velocity (u,, vl) in 
the lower fluid and (u,, v,) in the upper fluid may be written 
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If we were considering only surface waves (p, = 0) the next step would normally 
be to change to a frame of reference ( X ,  I’) moving in the positive x direction with 
the waves, a t  speed c, in which the motion is time independent. There would then be 
a new velocity potential and stream function 

0, = $,-cx and YP, = @,-cy 

and the problem would be solved to find X(Ql, Yl) and Y(Q,, Y l ) .  
However, if p, + 0 we must consider the fluids both above and below the interface. 

For non-infinitesimal waves Q1 + @, a t  two points in contact on the interface, and 
and O2 are Fourier series of each other. In order to apply boundary conditions on 

the interface Y, = Y,  = 0 it  is necessary to calculate Fourier series of Fourier series. 
The consequence of this is that there is now no gain, but a loss, from using the 0, Y 
plane and so we continue the calculation in the x, y plane. 

The boundary conditions will be pressure continuity a t  the interface and the 
kinematic conditions that the interface moves with the vertical velocity of the fluid. 

We use Bernoulli’s equation above and below the interface to obtain equations 
for the pressure, 

( 2 . 1 )  
Pl/Pl = - (a$l/at+ Hv$l)2 + 9Y) + Kl, 
PJP2 = - (a$,/at + B(v$2)z + SY) + K2, 

where K,, K ,  are Bernoulli constants. We can combine these equations on y = 7, 
where p 1  = p 2 ,  to obtain 

A ,  + ~ ~ ( a A / a t  + 4(V$,)2 +gy)  = ~ , ( a $ ~ / a t  + 3 ( ~ $ , ) ~  + g7) on Y = 7, ( 2 . 2 4  

where A ,  = p2K2-plK, .  
The kinematic conditions can be written 

( 2 . 2 b )  

( 2 . 2 4  

We will be making no linearization but will solve the fully nonlinear problem above 
by a perturbation expansion. The boundary conditions are to be applied on y = 7, 
but using Taylor’s theorem we can expand them so they can be applied on y = 0. 
The conditions ( 2 . 2 )  then become: 

( 2 . 3 ~ )  

( 2 . 3 b )  
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Now we can expand 7, q51, and $2 as Fourier series: 

m 

n = l  

m 

n = l  

7 = 2 ancosn6'; 

q51 = x A ,  enusinnO; 

( 2 . 4 ~ )  

(2.4b) 

Q, 

q52 = x Bne-nusinn6'; (2 .4~)  
n = l  

where 6' = x - c t  and q51 and q52 have been chosen to satisfy Laplace's equation and 
the conditions that q51 -+ 0 as y --f - m and q5z --f 0 as y + + w. 

We write 
W 

((Vq51)2) = 2 X Qn,jcosn6' 
n=O 

m 

n=O 
and (a/ayj) ((Vq52)2) = 2( - 1)i 2 Rn,* cosn8, (2.5) 

where 

and 

and 

C?n-l,j = (n + l ) i  Al(nAn) e(n+l)U+ (n + 3)i (2A2) (n + 1) An+1 e(n+3)g + . . . (n > 1) 

2Q0, = 2iA: e2Y + 4i( 2A2)2 e4U + . . . ; 

Rn-l, = (n + l)i Bl(nBn) e-(fl+l)U + (n + 3)j (2Bz) (n + 1) Bn+, e-(n+3)Y + . . . (n > I), 

and 2R0, = 2iB: e-2Y + 4i(2B2)2 e-4Y f . . . . 
We now substitute the expansions (2.4) and (2.5) into the boundary conditions (2.3) 

to obtain: 

m 
c z nunsinno+ 

n= 1 n =  1 

w (-?)i m 

j=1 3 .  m = l  
- I: -i-( 2 

00 m 

n= 1 n= 1 
Ao+(pl-p2)g~-plc 2 nAncosne+p2c nBncosn6' 
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We now assume expansions for a,, An, B,, A, and c of the form 

m 

k-0 
a, = a,,2kfzn+2k, 

m 
An = Cg x An, 2kcn+2k, 

k -0  

00 

B, = C, Bn,2kEn+2k, 
k=O 

m I 

These expansions are simiIar to  those made by Cokelet (1977) for surface waves. 
The expansion parameter, e, must be specified in order to solve the problem. We choose 
here e = a, the semi-wave-height. This is the only possible reasonable choice for E 

a priori, since, as yet, we do not know what the highest wave will be. 
The semi-wave-height a is given by 

00 

a = ~ ( v ( O ) - V ( ~ ) )  = Z a2n-1. 
n = l  

Equating powers of E in this equation we find 

and 

a1,o = 1 
n- 1 

m-0 
a1,2n = - x a2(n-m)+1,2k- 

Supposing that the right-hand sides of ( 2 . 6 )  can be written as, respectively, 

and 

I 
I 

m [in] 

n = l  m=O 
c, x x Xn,,ensinm8, 

co x x Y,,,ensinm>8, 

c; C x Zn,,encosm8, 

[in] 

n = l  m=O 

00 I h l  

n = l  m=O 

and equating coefficients of en in ( 2 . 6 ) )  we get 

(n - 2 m  - 2j) an-zm-zj, 2 j  sin (n - 2m - 2 j )  8 
m-0 

-i- Y,,,sinmO (2 .10b)  
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and 
[In] [fnl [)nl-m 

m=O m=0 i = O  
Ao,n+(P1+Pz) z a n - Z m . z m c o s ( n - 2 4 e -  z z Czm 

[In] 

m=O 
x (n - 2 m  - 2 j )  cos (n - 2 m  - 2 j )  O(pl An-2m-23, zj - p2 Bn-2m-zi, 2i) = X zn ,m  cos me, 

(2.10c)  
where [ in ]  is the greatest integer not exceeding t n .  

We can solve equations (2 .10)  using equation (2 .8) .  First we equate coefficients of 
sink0 in ( 2 . 1 0 ~ )  and (2 . lOb) and coefficients of cosk0 in ( 2 . 1 0 ~ ) .  The part of ( 2 . 1 0 ~ )  
independent of 0 gives 

If n is even, only even k occurs in (2.10) and, if n is odd, only odd k occurs. When n 
and Ic are even, we obtain, for k 2 2,  

A0.n = zn,** 

- k)l - xn,k 
ak, n-k - Ak, n-k - - - x C2mak, n-2m-k) k m = l  

y, I f fn-k) l  
ak,n-k + Bk, n-k = - '2mak, n-2m-k9 

m= 1 I (2.11) 

[&n-k)l 

m=l 
+ z kC2m(/hAk.  72-2m-k -p2 Bk, n-2m-k -k (P1 +P2) ak, n-2m-k)' 

When n and k are odd, provided k 2 3, we can use (2 .11) .  If k = 1 we do not know 
al,fi-l, A l ,n- l ,  ' 1 ,  n-1 or cn-1, so we use our fourth equation, (2 .8) ,  from which we find 

[f(n- 1)1 
%,n-1 = - x a1+2k,n-2k-1' 

k= 1 

Then the other equations become 

I (2 .12)  

3. Method of solution 
The algebraic manipulations required to solve equations (2 .1  I ) ,  (2 .12)  and (2 .8)  

were programmed in FORTRAN IV on Cambridge University's IBM 370/165 computer, 
for different values of the densities p1 and p2. The coefficients at order en were deter- 
mined from the previously determined coefficients of lower order. At each even order, 
211, the coefficients X2,,  2k,  Y2pp 2k and Z2,, 2k were calculated for L = a, 1, . . . , p .  Then 
A,,, 2k was found and 2k, A,,-,,, 2k and B2,-,,, 2k were determined for 

k = 0, 1, ..., @- 1). 
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At each odd order, 21, + 1,  X 2 p + l ,  2k+l ,  &p+l, 2k+l and Z,,,,, 2k+l were calculated for 
= O ,  . . . ,p* Then a2(p-k)+l, 2k9 A2(p-k)+l,  2k and B2(p-k!-l-1, 2k were found for 

k = 0, 1, ..., @- 1). 

Then a l ,  2p was found using (2.8), and so cZp, A l ,  2p  and I l l ,  2 p  could be found. 
The order to which the calculation has been taken was limited by the CPU time 

required, which is proportional to N5. The execution time for a double precision cal- 
culation to order €31 was about 15 minutes, independent of the densities chosen. Most 
of the time was taken in calculating the coefficients X,, m, Y,, and Z,, m, for which 
many Fourier series must be multiplied together. It would be possible to make the 
time needed proportional to N41og N by using fast Fourier transforms to multiply 
these series. However, this algorithm would not actually become faster until N N 32, 
so it was not used. The surface wave calculations of Schwartz (1974) and Cokelet 
(1977) took time propQrtiona1 to N4 because it was only necessary for them to multiply 
two Fourier series which could be done explicitly and the coefficients could be 
extracted before programming the calculation. 

The number of coefficients which has been obtained seems, however, to be sufficient 
for all the purposes required here, although higher accuracy would be obtained with 
more terms. There is no proof that the series for interfacial waves converge. Hunt 
(1961) claimed to prove the series converged for small values of the expansion para- 
meter. However, he essentially assumed the velocity potential was continuous across 
the interface, which it is not, thus invalidating the proof. The series obtained here do 
seem to be convergent when taken as power series in the expansion parameter, at least 
for small wave heights. Even if the series is divergent the Pad6 approximants will 
give useful information. The Pad6 approximants always seem to converge for waves 
short of the highest. 

Four different density configurations have been studied here. 
(i) p2/p1 = 0. These are free surface waves which have been studied by others. 

They have been considered in order to make comparisons with previous work. 
(ii) p2/pl = 0.001. These are waves with a fluid of approximately the density of 

air above them. These are useful in studying the effect of the air on surface waves. 
We shall call them air-water waves. 

(iii) p2/p1 = 0.1. These are waves of intermediate density used to examine the 
effect of changing the densities. 

(iv) p2/p1 = 1 - 6,6 .+ 0. These are Boussinesq waves in which the density difference 
(pl - p 2 )  is only important when incorporated with gravity. 

The accuracy of the program to calculate the series was checked in several ways. 
Schwartz (1974) gives the first six terms for the phase speed for surface waves as a 
series in our expansion parameter, a. These numbers were found to agree with those 
of the present calculation to about 15 decimal places, that is full machine accuracy. 
Unfortunately it is not possible to make a direct comparison with any of the other 
terms in the series owing to the different way in which he formulated the problem, 
but further comparisons were made later with surface waves and the agreement was 
good. Tsuji & Nagata (1973) calculated the series for interfacial waves to fifth order 
using the same expansion procedure but a different expansion parameter, namely 
al, o.  By calculating the series for a in terms of ul, it  was possible to make a check on 
the accuracy to fifth order for any density configuration. Again this calculation agreed 
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with theirs to full machine accuracy. We have calculated the series here to 31st order 
in the expansion parameter for each of the different densities and this gives sufficient 
accuracy to consider waves up to the highest. 

4. Highest waves and surface profiles 
Interfacial waves reach their maximum height when the horizontal fluid speed a t  

eome point in the fluid equals the phase speed. Because V2(a$/ax) = 0 in the interior 
of each fluid, a$/ax will attain its extreme values on the interface, and so the hori- 
zontal fluid speed will first equal the phase speed on the interface. The height of the 
waves is limited by this condition. Consider the steady motion in a frame of reference 
moving forward a t  the phase speed of the waves. The particles by the interface are 
in general moving in the - x direction. If the fluid speed exceeds the phase speed at 
some point in the flow the particle motion is reversed and the particle path, and hence 
the interface, must assume an S-shape through this point. Thus there is a region in 
which heavy fluid is above light fluid. For waves which are lower than the highest wave 
the horizontal fluid speed is always less than the phase speed. The difference between 
the horizontal speed and the phase speed decreases as the wave height increases. 

In  the frame which we are using this criterion can be written as a$,/ax-c = 0. 
At the point where this occurs the interface will be vertical and so we must also have 
a#,/ax- c = 0 a t  the same point. For surface waves this first occurs a t  the crest of 
the wave, giving a highest wave which has a stagnation point at  the crest in the frame 
moving with the waves. For interfacial waves this cannot first occur at  the crest, 
since to have a stagnation point at  the crest of a wave would imply infinite velocity 
over the crest in the upper fluid. In order to determine the point along the interface 
at which breaking first occurs and to find the height of such a highest wave the value 
of @,/ax - c is calculated using Pad6 approximants a t  points along the interface for 
different values of the semi-wave-height a. 

We use [ N ,  N ]  Pad6 approximants to sum the series for the horizontal velocity in 
order to  analytically continue the sum of the series. Given a series known to order 

f ( z )  = a,, + a,z + a2z2 + . . . + a2N22N, 
Zah' 

its Pad6 approximant [ N ,  N ] f ( z )  can be defined by 

The coefficients b, and ci are found by equating powers of z up to order zW in (4.1) 
and (4.2). The theory of Pad6 approximants is not completely understood but they 
have been used with great success in the past in the theory of water waves by Schwartz 
(1974), Longuet-Higgins & Fenton (1974) and Cokelet (1977). None of the theorems 
yet proved about Pad6 approximants will make their use rigorous in applications 
such as these. The best references to date on the subject are Baker (1965) and Graves- 
Morris (1973). 

In figure 1 (a )  the horizontal fluid velocity, aq5Jax - c, at the crest of the surface 
wave is plotted as a function of a. The highest wave will have a wave height corres- 
ponding to the value for which a$,/ax - c equals zero. Based on the convergence on 
the Pad6 approximants the series becomes zero when the semi-wave-height a equals 
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FIGURE 1 .  (a) The horizontal fluid velocity, (a$,/a.x) - c ,  at the crest of a surface wave. (b) The 
velocity at 8 = -lLg with p2/p1 = 0.1. (c) The velocity for Boussinesq waves. The solid line is 
the velocity at 8 = in. The broken line is the velocity just below the crest, 8 = 0. For each 
figure the solid line is the [7, 71 approximant and the dotted line is the [6, 61 approximant. 
Where the dashed line is not present the two Pad6 approximants are too close for their difference 
to be visible. 

0.445 f 0.004. This is a ratio of wave height to wavelength of 0.1415 f 0.001. The value 
of this highest wave given by Cokelet is 0.141055. The value given by Cokelet is 
undoubtedly more accurate than that given here since we are using only 31 terms of 
our series, whereas he calculated 110 terms. Nevertheless this shows agreement within 
the accuracy of the present calculation. 

For air-water waves the fluid velocity cannot first be zero a t  the crest. However, 
the point where the velocity does first become zero is so close to the crest that it  cannot 
be found using only the number of terms in the series a t  present available. It is be- 
tween 8 = 0 and 8 = n/50 with a maximum value of a of 0.455 f. 0-004; since at 
8 = 0 and a = 0.451 all the Pad6 approximants above [3,3] are negative and at 
a = 0.459 they are all positive, while a t  8 = n/50 and a = 0.451 all the approximants 
above [3,3] are negative and at  a = 0.459 they are still negative. The highest air- 
water wave has a ratio of wave height to wavelength of 0.1448 * 0.001. Thus the 
maximum wave height has increased due to the fluid on top of the wave by about 2 %. 

For the case where p2/p1 = 0.1 the horizontal fluid velocity first becomes zero at 
8 = n/lO f n/lOO. The maximum semi-wave-height a increases to 0.71 * 0.02 and the 
velocity at  8 = n/10 is shown in figure 1 ( b ) .  The ratio of wave height to wavelength 
is 0.226 & 0.006. 

For Boussinesq waves the wave first starts to break a t  the mid-height where 7 = 0 
and 8 = ti.. The maximum value of a is 1.10 0.02 corresponding to a ratio of wave 
height to wavelength of 0-35 f 0.006. In  figure 1 (c) the solid line shows the horizontal 
fluid velocity at the mid-height. The dashed line on the same graph shows the value 
of the same function just below the crest. We see that the horizontal fluid velocity 
is always negative a t  the crest and is still negative when the velocity a t  the mid- 
height becomes zero. 

We show in table 1 the heights of the highest waves and the position where they 
break for each of the different densities we have considered here. 
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Distance from crest where 
PPIP1 a h  breaking first occurs 

0 0~1416+0*001 0 
0.00 1 0.1448 f 0.001 ih+* 
0.1 0.226 f 0.006 AT+* 
1.0 0.360 +_ 0.006 a. 

TABLE 1 

In figures 2 (a)-(c) the interface profiles of the waves are shown for different values 
of the wave height below the highest for each of the waves considered. Their profiles 
have been calculated using the series for the profile 

00 m 
7 = a,cosn%, a, = x a,,,kEn+2k. 

n= 1 k=O 
(4.3) 

First the coefficients a, were found by Pad6 approximating their series. Then the 
series for 7 is Pad6 approximated as a series in 8, for the series for 7 can be written as 
a power series m W 

27 = x a,eine+ x a,e-ine. (4.4) 
n=l n=l 

This method is similar to that used by Schwartz and Cokelet to calculate the surface, 
although the representation of the surface here is somewhat simpler. For each a,, if 
we have taken the expansion to order N ,  then we will know [$(N - n) + 11 terms in 
the series for a,. Thus for large n there will not be many terms in the series and the 
Pad6 approximants will not be able to converge. We do not want to retain coefficients 
in the expansion which have not converged and in order to do this we calculate 

[L, L]a,- [L- 1, L -  1]a, 
nu 

E =  

for n = 1, ..., N .  We take L = 1 , 2 ,  ... until either E < 0.5 x or L = [$(N-n)]. 
IfE < 0.5 x 10-3, then we take [L, L] a, as the nth Fourier coefficient. If L = [ a ( N  - n)] 
then we take an-l as the largest usable Fourier coefficient. We have chosen E < 0.5 x 

rather than Cokelet's criterion of E < 10-5, as this enables waves closer to the 
highest to be plotted. 

5. Integral properties of waves 
We calculate here the phase speed, wave momentum, kinetic and potential energies, 

the momentum flux and the energy flux of the waves. It is possible to extend the 
results of Longuet-Higgins ( 1975), who calculated relationships between these quan- 
tities for surface waves, to interfacial waves. We have already chosen axes so that the 
mean elevation 

(5.1) 
- 1 h  
7 ' A J  0 7dx 

is zero. Similarly, by choice of reference frame, the circulation per unit length 
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FIGURE 2. The surface profiles. (a )  Surface waves at a = 0.05, 0.1, ..., 0.4, 0.41, 0.42. (a) Waves 
with p2/p1 = 0.1 at a = 0.1, 0.2, ..., 0.6, 0.65. ( c )  Boussinesq waves with a = 0.1, 0.2, ..., 1.0, 
1.05. 
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is zero. We define the mean wave momentum or impulse per unit horizontal distance 

J - W  J v  
the mean kinetic energy 

T = s7 Qp1(u2 + v2)  dy +Im Qp2(u2 + vz) dy, 
- W  7 

the mean potential energy 

(5.5) 

The radiation stress, the excess flux of momentum due to the waves per unit span, 

where p is the pressure and p o  is the pressure in the absence of the waves. The mean 
energy flux 

F = Iq --m ( P + 6 P 1 ( U 2 + w 2 ) + P ~ 9 ~ ) u d y t ~ 7 ~  (P+3P,(u2+~2)+P29Y)u~Y. (5.7) 

Longuet-Higgins ( 1975) has derived relationships between these quantities when 
pz = 0. These results are easily extended to interfacial waves when pz + 0. We omit 
the proofs here since they follow those of Longuet-Higgins very closely. The rela- 
tionships are 

and 

T = +I, 
S,, = 4T-3V7, 

F = c(3T- 2V). 

1 and V were calculated by substituting in the series for u and 7 r(2.4) and (2.7)], 

obtaining the series m \ 

and 

1 I = co c In@ 

v = c; K'nEZn. 

n=l 

m 

n=1 

These, and the series for c [see (2.7)] ,were [ N , N ]  Pad6 approximated. The kinetic 
energy, momentum flux and energy flux were then calculated by means of the rela- 
tions (5.8). The results are shown graphically in figures 3(a)-(d) and are available in 
tabular form from the author or the editorial office of the Journal of Fluid Mechanics. 

For free surface waves we see there is a maximum in the phase speed c and each of 
the quantities I, T, V ,  S,, and F for waves short of the highest. For air-water waves 
the quantities I, T ,  V ,  S,, and F have maxima. The error in the phase speed c is too 
large to be certain whether or not there is a maximum, although the fact that the 
other wave properties do, suggests the phase speed also has a maximum. The Bous- 
sinesq waves and the waves with fluids of densities such that p2/p1 = 0.1 do not 
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FIGURE 3. The wave properties c, I ,  T, V ,  S,, and P for (a) surface waves, ( b )  air-water waves, 
(c) waves with p2/p1 = 0.1, (d )  Boussinesq waves. They are each plotted to the maximum value 
of a. 

exhibit maxima in any of their properties, but increase monotonically with the wave 
height. These dimensionless versions of the wave properties increase as the upper 
density increases, thus the highest Boussinesq wave moves faster than any other 
wave relative to its infinitesimal wave speed. 

6. Discussion 
We have shown here the difference in limiting forms between surface waves and 

interfacial waves. The maximum height which interfacial waves of a given wavelength 
can attain, increases as the density ratio of the fluids increases. For surface waves 
the maximum value of wave height to wavelength ratio is about 0-14 and for Bous- 
sinesq waves the maximum value is about 0.35. The point at which the limiting cri- 
terion is f i s t  satisfied moves from the crest for surface waves to the mid-height for 
interfacial waves. 
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For waves on an almost free surface with a fluid of small, but finite, density above 
the wave, the waves can be slightly higher than free surface waves before breaking 
occurs. Moreover they are not limited by the velocity at  the crest, but by the hori- 
zontal velocity at  a point a short distance away. These waves still have a maximum in 
their wave properties making it possible to consider the consequences of the maximum 
in connexion with waves occurring naturally in the laboratory or on the oceans. 

When the interfacial waves start to break there will be heavy fluid over light fluid 
and one may expect Rayleigh-Taylor instability and mixing. The flow may again 
become stable with rotors, regions of closed streamlines moving at  the phase speed 
of the waves. There have not been many observations of finite amplitude interfacial 
or internal waves. Thorpe ( 1968 b) obtains experimentally progressive finite amplitude 
interfacial waves in a fluid otherwise at rest, and compares with the third-order results 
for the interface shape. The waves he observes are not, however, nearly high enough 
to be breaking. Thorpe (1978) studies internal waves in a shear flow and shows ex- 
periments where breaking occurs before Kelvin-Helmholtz instability. The most 
familiar naturally occurring example of internal waves is in the ocean summer thermo- 
cline, where the situation is again complicated by shear. Woods (1968) has made 
observations of waves in the step-structure of the thermocline, but it appears that 
the waves he observed were breaking by Kelvin-Helmholtz instability, as the shear 
was sufficiently high and the waves themselves were not high enough to be breaking. 
Thorpe (1968 a) has done experiments on standing waves between two fluids of similar 
densities and observed some sort of breaking taking place a t  the node. This could be 
a shear instability generated by the flow of the wave, as he suggests, but it seems 
possible that it is wave breaking. 
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his help in preparing this paper. I should also like to thank Dr S. A. Thorpe for bringing 
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